Why is metal bioaccumulation so variable? Biodynamics as a unifying concept.
نویسندگان
چکیده
Ecological risks from metal contaminants are difficult to document because responses differ among species, threats differ among metals, and environmental influences are complex. Unifying concepts are needed to bettertie together such complexities. Here we suggest that a biologically based conceptualization, the biodynamic model, provides the necessary unification for a key aspect in risk: metal bioaccumulation (internal exposure). The model is mechanistically based, but empirically considers geochemical influences, biological differences, and differences among metals. Forecasts from the model agree closely with observations from nature, validating its basic assumptions. The biodynamic metal bioaccumulation model combines targeted, high-quality geochemical analyses from a site of interestwith parametrization of key physiological constants for a species from that site. The physiological parameters include metal influx rates from water, influx rates from food, rate constants of loss, and growth rates (when high). We compiled results from 15 publications that forecast species-specific bioaccumulation, and compare the forecasts to bioaccumulation data from the field. These data consider concentrations that cover 7 orders of magnitude. They include 7 metals and 14 species of animals from 3 phyla and 11 marine, estuarine, and freshwater environments. The coefficient of determination (R2) between forecasts and independently observed bioaccumulation from the field was 0.98. Most forecasts agreed with observations within 2-fold. The agreement suggests that the basic assumptions of the biodynamic model are tenable. A unified explanation of metal bioaccumulation sets the stage for a realistic understanding of toxicity and ecological effects of metals in nature.
منابع مشابه
Characterizing dissolved Cu and Cd uptake in terms of the biotic ligand and biodynamics using enriched stable isotopes.
The biotic ligand model considers the biological and geochemical complexities that affect metal exposure. It relates toxicity to the fraction of physiological active sites impacted by reactive metal species. The biodynamic model is a complementary construct that predicts bioaccumulation and assumes that toxicity occurs when influx rates exceed rates of loss and detoxification. In this paper we ...
متن کاملMetal-Induced Oxidative Stress and Cellular Signaling Alteration in Animals
Contamination by heavy metals has attracted increasing attention considering the ability of these elements in producing serious consequence to ecosystem, and especially on animals health. Due to their widespread use in human activities such as industry, agriculture and even as medicine (e.g. arsenic, selenium and platinum), numerous health risks may be associated with exposure to these substanc...
متن کاملHeavy metal bioaccumulation and its potential relation with incidence of Canine Parvovirus infection in Golden Jackals, North Iran
BACKGROUNDS: Heavy metal toxicity has confirmed to be a critical threat to animals’ health. It has been proved that heavy metals can cause immunosuppression. Although, it is said that damage of immune function plays a contributing role in the increasing incidence of infectious diseases. The increasing use of rural habitats by jackals make them suitable to monitor the impact of anthropogenic on ...
متن کاملA biodynamic understanding of dietborne metal uptake by a freshwater invertebrate.
Aquatic organisms accumulate metals from dissolved and particulate phases. Dietborne metal uptake likely prevails in nature, but the physiological processes governing metal bioaccumulation from diet are not fully understood. We characterize dietborne copper, cadmium, and nickel uptake by a freshwater gastropod (Lymnaea stagnalis) both in terms of biodynamics and membrane transport characteristi...
متن کاملInter-site differences in the biodynamics and body concentration of silver in a marine predatory gastropod
The body concentrations of Ag in a top marine predator, the whelk Thais clavigera, varied significantly (1.10 to 4.67 μg g–1 dry wt) in individuals collected from 3 intertidal rocky shores in Hong Kong, whereas there was no significant difference in Ag concentrations in species from lower trophic levels (macroalgae Ulva sp. and rocky oyster Saccostrea cucullata). We compared the variation in Ag...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental science & technology
دوره 39 7 شماره
صفحات -
تاریخ انتشار 2005